NIH’s Strategic Vision for Data Science: Enabling a FAIR-Data Ecosystem

Susan Gregurick, Ph.D.
Senior Advisor
Office of Data Science Strategy

May 21, 2019
VISION

a modernized, integrated, FAIR biomedical data ecosystem
IMAGINE…

the ability to link data in the Framingham Heart Study (NHLBI) with Alzheimer’s health data (NIA) to understand correlative effects in cardiovascular health with aging and dementia.
IMAGINE... the ability to quickly obtain access to data, and related information, from published articles.

Negative stain EM reveals the principal architecture of the rhodopsin/GRK5 complex. (Image by Van Andel Research Institute)

Absorption spectra of purified CsR-WT (A) and CySeR (B) at pH 5 (green), pH 7.4 (red), and pH 9 (blue). R. Fudim, e al, Science Signaling, 2019

IMAGINE…

the new capabilities that artificial intelligence and advanced technologies offer medical research, treatment, and prevention.
IMAGINE… the ability to link electronic health care records with personal data and with clinical and basic research data.
This is the promise of the NIH Strategic Plan for Data Science

…and here’s how we will get there.
Strategic Plan for Data Science: Goals and Objectives

<table>
<thead>
<tr>
<th>Data Infrastructure</th>
<th>Modernized Data Ecosystem</th>
<th>Data Management, Analytics, and Tools</th>
<th>Workforce Development</th>
<th>Stewardship and Sustainability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimize data storage and security</td>
<td>Modernize data repository ecosystems</td>
<td>Support useful, generalizable, and accessible tools</td>
<td>Enhance the NIH data science workforce</td>
<td>Develop policies for a FAIR data ecosystem</td>
</tr>
<tr>
<td>Connect NIH data systems</td>
<td>Support storage and sharing of individual datasets</td>
<td>Broaden utility of, and access to, specialized tools</td>
<td>Expand the national research workforce</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Better integrate clinical and observational data into biomedical data science</td>
<td>Improve discovery and cataloging resources</td>
<td>Engage a broader community</td>
<td>Enhance stewardship</td>
</tr>
</tbody>
</table>

https://datascience.nih.gov
<table>
<thead>
<tr>
<th>Goals and Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategic Plan for Data Science: Goals and Objectives</td>
</tr>
<tr>
<td>FAIR Data and Data Infrastructure</td>
</tr>
</tbody>
</table>

https://datascience.nih.gov
Sustainable Data Policies

FAIR Data and Data Infrastructure

Connecting NIH Data Ecosystems

Engaging with a Broader Community

Enhancing Biomedical Workforce
The NIH **Office of Data Science Strategy (ODSS)** in the Office of the Director:

- Provides leadership and coordination on the strategic plan for data science, in collaboration with the ICOs.
- Helps develop and implement NIH’s vision for a **modernized** and **integrated** biomedical data ecosystem.
- Develops a diverse and talented data science workforce.
- Coordinates with trans-NIH governance committees.
- In coordination with the CIO, builds strategic partnerships to develop and disseminate advanced technologies and methods.
Implementation Progress: Oct. 2018 – Present

- **FAIR Data and Data Infrastructure**
- Sustainable Data Policies
- Connecting NIH Data Ecosystems
- Engaging with a Broader Community
- Enhancing Biomedical Workforce
Making Data FAIR

Findable	☐ must have unique identifiers, effectively labeling it within searchable resources.
Accessible	☐ must be easily retrievable via open systems and effective and secure authentication and authorization procedures.
Interoperable	☐ should “use and speak the same language” via use of standardized vocabularies.
Reusable	☐ must be adequately described to a new user, have clear information about data-usage licenses, and have a traceable “owner’s manual,” or provenance.
Overview of Sharing Publication and Related Data

NIH strongly encourages open access Data Sharing Repositories as a first choice.

Options of scaled implementation for sharing datasets

Datasets up to 2 gigabytes

PubMed Central
- PMC stores publication-related supplemental materials and datasets directly associated publications. Up to 2 GB.
- Generate Unique Identifiers for the stored supplementary materials and datasets.

Datasets up to 20 gigabytes

Use of commercial and non-profit repositories
- Assign Unique Identifiers to datasets associated with publications and link to PubMed.
- Store and manage datasets associated with publication, up to 20 GB.

High Priority Datasets petabytes

STRIDES Cloud Partners
- Store and manage large scale, high priority NIH datasets. (Partnership with STRIDES)
- Assign Unique Identifiers, implement authentication, authorization and access control.
The TRUST Principles for Data Repositories

- **Transparency**: is achieved by providing publicly accessible evidence of the services that a repository can and can not offer.
- **Responsibility**: is a commitment to provide high technical quality data services.
- **User community**: is the focus on the uses and potential uses of the data and services offered.
- **Sustainability**: is the capability to support long-term data preservation and use.
- **Technology**: is the infrastructure and capabilities to support the repository operations.

Supporting data repositories and knowledgebase resources
Develop Characteristics for Open Access Data Sharing Repositories

- Characteristics drafted, includes provisions for repositories with human data
- Developed and reviewed in trans-NIH process
- Planned Community Input: Request for Information (RFI)
• Data resources are important research tools
• Historically funded through research grants
• Funding mechanism should be optimal for type of resource
• **End goal**: researcher confident in data and information integrity

Solution: New Funding Announcement for data repositories and knowledgebases

- Resource plan requirement
 - **Scientific Impact**
 - **1. Community Engagement**
 - **1. Quality of Data and Services and Efficiency of Operations**
 - Governance

Supporting data repositories and knowledgebase resources
Sharing Datasets as Supplementary Materials

Published online 2016 Nov 22. doi: 10.1080/15548627.2016.1256934

Autolysosome biogenesis and developmental senescence are regulated by both Spns1 and v-ATPase

Tomoyuki Sasaki, a, f Shanshan Lian, a, f Alam Khan, a, b Jesse R. Llop, c Andrew V. Samuelson, c Wenbiao Chen, d Daniel J. Klionsky, e and Shuji Kishi, a

• Author information • Article notes • Copyright and License information Disclaimer

This article has been cited by other articles in PMC.

Associated Data

• Supplementary Materials

1256934_Supplemental_Material.zip
kaup-13-02-1256934-s001.zip (9.6M)
GUID: AC7F9D11-9E8B-4D2D-9437-4E7942A3ACC8

FAIR Data: Linking datasets to publications (PubMed)
Piloting a Repository to Make Research Data Citable, Sharable, and Discoverable Using Figshare

Data is openly accessible
Documented with customizable, discipline-specific metadata
Authors can link grant information to data
All data is associated with a license
Self-publish any data type in any file format
Assign institutionally (NIH) branded DOI
Indexed in Google and discoverable across search engines
Ability to embargo data assets
Usage metrics tracked openly
FAIR implementation

Providing FAIR-enabled, open-access options for datasets
Science & Tech Research Infrastructure for Discovery, Experimentation and Sustainability Initiative

• First STRIDES agreement: Google Cloud (July 2018)
• Second STRIDES agreement: Amazon Web Services (Oct. 2018)
• Other Transaction mechanism
• Additional partnerships anticipated

https://datascience.nih.gov/strides

FAIR Data: Move/Access to high priority data sets in cloud service providers
Options of scaled implementation for sharing datasets

<table>
<thead>
<tr>
<th>Datasets up to 2 gigabytes</th>
<th>Datasets up to 20* gigabytes</th>
<th>High Priority Datasets petabytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PubMed Central</td>
<td>Use of commercial and non-profit repositories</td>
<td>STRIDES Cloud Partners</td>
</tr>
</tbody>
</table>
| • PMC stores publication-related supplemental materials and datasets directly associated publications. Up to 2 GB. | • Assign Unique Identifiers to datasets associated with publications and link to PubMed.
 • Store and manage datasets associated with publication, up to 20* GB. | • Store and manage large scale, high priority NIH datasets. (Partnership with STRIDES)
 • Assign Unique Identifiers, implement authentication, authorization and access control. |

NIH strongly encourages open access Data Sharing Repositories as a first choice.

Implementation Progress: Oct. 2018 – Present

- FAIR Data and Data Infrastructure
- **Sustainable Data Policies**
- Connecting NIH Data Ecosystems
- Engaging with a Broader Community
- Enhancing Biomedical Workforce
Planning for an NIH Data Management and Sharing Policy

Community Input Solicited
• 189 submissions from national and international stakeholders

Identified need for appropriate infrastructure
• policy and implementation to go ‘hand-in-hand’

Develop draft policy for data management and sharing and related guidance

Release draft for community input (targeting summer 2019)

Release final policy (targeting end of calendar year 2019)

Sustainable data management and sharing policy
Implementation Progress: Oct. 2018 – Present

- FAIR Data and Data Infrastructure
- Sustainable Data Policies
- Connecting NIH Data Ecosystems
- Engaging with a Broader Community
- Enhancing Biomedical Workforce
Examples of Datasets Moving to the STRIDES Cloud

- NHLBI Framingham Heart Study
- All of Us Research Program
- NCI Genomic Data Commons
- NCBI data resources
- NHLBI Trans-Omics for Precision Medicine (TOPMed) Program
- NCI Proteomics Data Commons and Imaging Data Commons
- NIMH Data Archive
- Gabriella Miller Kids First Pediatric Research Program
- Transformative CryoEM Program
- And many others!
NIH’s Data Environments are Rich, but Siloed

The DataSTAGE project aims to create a community of practice that is motivated to collaboratively solve technical challenges to enable NHLBI investigators to find, access, store, share, cross-link, and compute on large-scale data sets. Though the primary goal of the DataSTAGE consortium is to build a data science platform, at its core this is a people-centric endeavor.
Single ‘Sign-on’ Across NIH Data Resources

• Streamlined login for authorization of controlled-access data
• Make use of industry standard technology (web tokens)
• Flexible for different NIH needs: ‘do no harm to existing systems’

• **End goal:** NIH-wide system for a consistent method to access data across NIH data resources

Connecting NIH Data Systems:
Single method for sign-on and data access across repositories and CSPs
Implementation Progress: Oct. 2018 – Present

- FAIR Data and Data Infrastructure
- Sustainable Data Policies
- Connecting NIH Data Ecosystems
- Engaging with a Broader Community
- Enhancing Biomedical Workforce
Leverage, Develop, and Extend Methods and Tools from Broader Communities

• Partner with other federal agencies (e.g. National Science Foundation) on data science activities

• Leverage SBIR/STTR to bring in industry expertise

• Engage a broader community through codeathons, citizen science, and challenges

• Improve software sustainability, efficiency and utility
Implementation Progress: Oct. 2018 – Present

- FAIR Data and Data Infrastructure
- Sustainable Data Policies
- Connecting NIH Data Ecosystems
- Engaging with a Broader Community
- Enhancing Biomedical Workforce
Enhance the Biomedical Workforce

Coding it Forward

- 10 undergraduate fellows for 2019 placed in admin or funding offices for 10-week summer program
- Student-led non-profit places tech-savvy students in federal agencies
- ODSS will coordinate on-campus networking opportunities for fellows

https://www.codingitforward.com/

Graduate Data Science Summer Program

- 13 master’s-level interns for 2019
- Pilot driven by discussion with local universities consortium
 - UVA, George Mason, George Washington, UMD, University of Delaware/Georgetown, Johns Hopkins
- Open to students from any university

https://www.training.nih.gov/data_science_summer
NIH Data Science Senior Fellowships

• One- or two-year national service sabbatical in high-impact NIH programs

• Seeking data science and technology experts

• Work with large volumes of biomedical research data, impact public health, gain policy exposure

• Expecting 5+ fellows in first cohort, starting late 2019

• Program evaluation in 2024
Improve Data Science-Related Training through T Grants, F and K Awards

- Expand expectations for development of quantitative and computational skills for students and postdoctoral fellows supported by NIH training (T) grants
 - NIGMS T32/T34, Neuroscience T32, or NLM T15 FOAs
- Disseminate across all training mechanism and ICs
- Launch data science-focused training programs in specific biomedical research areas of high need
 - Biomedical behavioral and social science
 - Neuroscience
 - RFA-OD-19-011

Enhancing the biomedical workforce
Improving R&R and RCR and Evaluating Efficacy of Interventions

- Support development of training modules to fill in gaps in rigor and reproducibility in data science
- Support training modules on responsible conduct of research in data science
- Improvement and expansion of K25 program (Mentored Quantitative Research Development – PA-18-396)
Building Diversity in Biomedical Data Science

• Boot camps/short training programs for diverse cohorts of biomedical research trainees
 • Includes STRIDES CSP and professional societies

• Increase emphasis on quantitative and computational skills development in existing diversity programs
 o E.g., new language in NIGMS FOAs (already in place)
VISION

a modernized, integrated, FAIR biomedical data ecosystem
Special Thanks

• **STRIDES**: Andrea Norris, Nick Weber and NMDS team

• **Connecting NIH Data Resources**: Vivien Bonazzi, Regina Bures, Ishwar Chandramouliswaran, Tanja Davidsen, Valentine Di Francesco, Jeff Erickson, Tram Huyen, Rebecca Rosen, Steve Sherry, Alastair Thomson, Nick Weber, and BioTeam

• **Linking Publications to Datasets**: Jim Ostell and NCBI Implementation Team

• **Data Repository and Knowledgebase Resources**: Valentina di Francesco, Ajay Pillai, Qi Duan, Dawei Lin, Christine Colvis, and James Coulombe

• **Trustworthy Data Repositories**: Dawei Lin, Kim Pruitt, Jennie Larkin, Elaine Collier, Christine Melchior, Minghong Ward, and Matthew McAuliffe

• **Criteria for Open Access Data Sharing Repositories**: Mike Huerta, Dawei Lin, Maryam Zaringhalam, Lisa Federer and BMIC Team

• **Pilot for Scaled Implementation for Sharing Datasets**: Ishwar Chandramouliswaran and Jennie Larkin

• **Coding-it-Forward Fellows Summer Program**: Jess Mazerik

• **Data Science Training**: Valerie Florance, Jon Lorsch, Kay Lund, Kenny Gibbs, Shoshana Kahana, Erica Rosemond, Carol Shreffler

• **Diversity in Biomedical Data Science**: Valerie Florance, Jon Lorsch, Hanna Valantine, Roger Stanton, Charlene Le Fauve, Ravi Ravichandran, Zeynep Erim, Derrick Tabor, Rick Ikeda
Stay Connected

@NIHDataScience

/NIH.DataScience

www.datascience.nih.gov